On fluid model and averaged parameters model for Markov additive processes with finite environment's state space C. Macci

Abstract

We deal with a continuous time Markov additive process (J_t, S_t) where the environment (J_t) is a Markov chain on a finite state space E. Moreover we always assume that (J_t) is irreducible and we also consider some further Markov additive processes derived in a suitable way from (J_t, S_t) : the fluid model $(J_t, S_t^{(F)})$, the averaged parameters model $(J_t, S_t^{(A)})$ and (J_t, \underline{S}_t) where (\underline{S}_t) depends on (J_t) only. In this paper the results in [M] concerning (S_t) , $(S_t^{(F)})$ and $(S_t^{(A)})$ are extended to (S_t, \underline{S}_t) , $(S_t^{(F)}, \underline{S}_t)$ and $(S_t^{(A)}, \underline{S}_t)$. In particular the inequalities between rate functions are related with inequalities between suitable Perron-Frobenius eigenvalues. We also present some convergence results for rate functions and Lundberg parameters for both fluid model and averaged parameters model. A final section is devoted to the discrete time case.

[M] C. Macci: "Continuous time Markov additive processes: composition of large deviations principles and comparison between exponential rates of convergence". J. Appl. Prob. 38 (2001), 917–931.